Global weak solutions for generalized SQG in bounded domains
نویسندگان
چکیده
منابع مشابه
Global weak solutions for SQG in bounded domains
We prove existence of global weak L solutions of the inviscid SQG equation in bounded domains.
متن کاملLocal and global strong solutions for SQG in bounded domains
We prove local well-posedness for the inviscid surface quasigeostrophic (SQG) equation in bounded domains of R. When fractional Dirichlet Laplacian dissipation is added, global existence of strong solutions is obtained for small data for critical and supercritical cases. Global existence of strong solutions with arbitrary data is obtained in the subcritical cases.
متن کاملCritical SQG in bounded domains
We consider the critical dissipative SQG equation in bounded domains, with the square root of the Dirichlet Laplacian dissipation. We prove global a priori interior C and Lipschitz bounds for large data.
متن کاملGlobal Weak Solutions to a Generalized Hyperelastic-rod Wave Equation
We consider a generalized hyperelastic-rod wave equation (or generalized Camassa– Holm equation) describing nonlinear dispersive waves in compressible hyperelastic rods. We establish existence of a strongly continuous semigroup of global weak solutions for any initial data from H1(R). We also present a “weak equals strong”uniqueness result.
متن کاملUniqueness for Sqg Patch Solutions
This paper is about the evolution of a temperature front governed by the surface quasi-geostrophic equation. The existence part of that program within the scale of Sobolev spaces was obtained by the third author (2008). Here we revisit that proof introducing some new tools and points of view which allow us to conclude the also needed uniqueness result.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis & PDE
سال: 2018
ISSN: 1948-206X,2157-5045
DOI: 10.2140/apde.2018.11.1029